Lateral Lymphadenectomy in Rectal Cancer

- What is the best parameter for its indication? -

MD Anderson Sancer Center

Tsuyoshi Konishi, MD, PhD

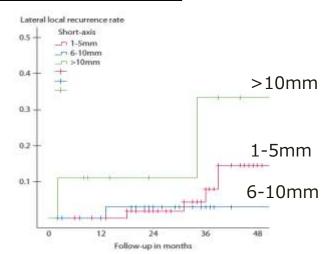
The University of Texas MD Anderson Cancer Center, Houston, Texas, USA

COLOSOS 2024, Toronto, 10/26-27,2024

Conflict of Interest

Lecture fee: Medtronic

Consultant: Johnson & Johnson


nCRT does NOT control lateral nodal disease

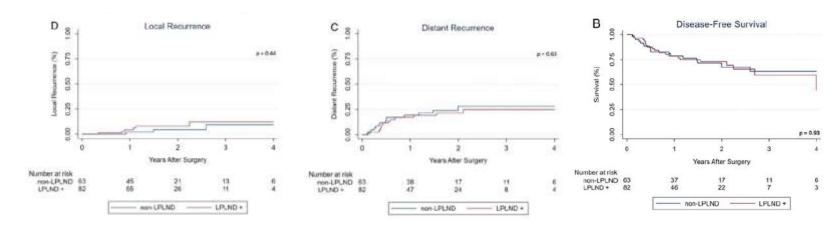
Baseline enlarged lateral nodes

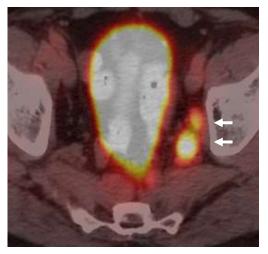
→ High local recurrence after nCRT + TME

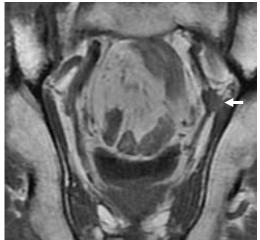
Baseline lateral node ≥5 mm: 27% lateral local recurrence >80% of LR occurred in lateral area

Baseline lateral node >10 mm: 33% lateral local recurrence

Kim, ASO 2008


Kusters, DCR 2017


TNT Does NOT Eliminate Lateral Nodal Disease


cStage II-III rectal cancer with baseline enlarged lateral node (N=158)

- LPLND 56 % (N=88)
- yp-lateral N+: 19.0 % (N=30)
- No increase in distant/local recurrences with LPLND compared to c-lateral-N negative pts

- Lateral node is the major site of local rec. after nCRT + TME alone
- >80% of local rec. in cStage II-III low rectal cancer occurs in lateral area

Importance of Proper Indication for LPLND

Inappropriate indication may result in "no oncologic benefits"

J Gustrointest Surg (2011) 15:1368-1374 DOI 10.1007/s11605-011-1533-7 htt J Colorectal Dis (2017) 32:333-340 DOI 10.1007/s00384-016-2711-6

ORIGINAL ARTICLE

ORIGINAL ARTICLE

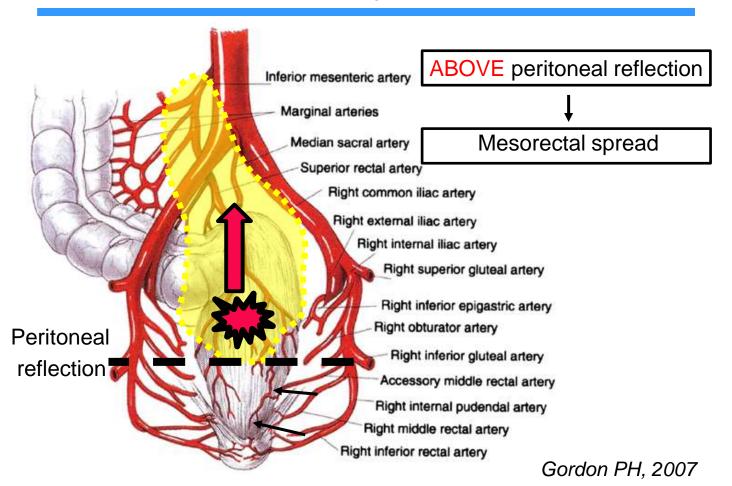
Clinically Enlarged Lateral Pelvic Lymph Nodes Do Not Influence Prognosis after Neoadjuvant Therapy and TME in Stage III Rectal Cancer

Sekhar Dharmarajan - Dandan Shuai - Alyssa D, Fajardo - Elisa H. Birnbaum -Steven R. Hunt - Matthew G, Mutch - James W, Fleshman - Anne Y, Lin Extended lymphadenectomy for locally advanced and recurrent rectal cancer

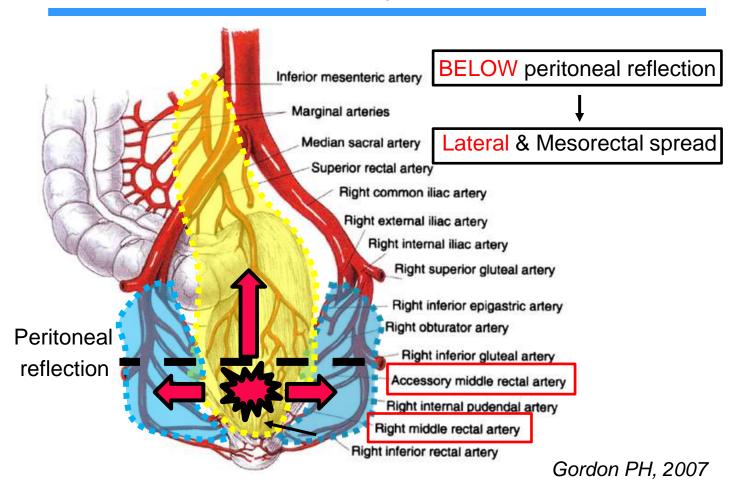
Panagiotis A, Georgiou ^{1,2} · S. Mohammed Ali ^{1,2} · Gina Brown ³ · Shahnawaz Rasheed ^{1,2} · Paris P, Tekkis ^{1,2}

Extended lymphadenectomy versus conventional surgery for rectal cancer: a meta-analysis

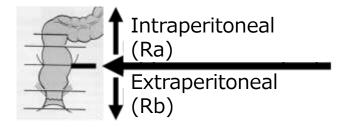
Panagiotis Georgiau, Emile Tan, Nikolaos Gouvas, Anthony Antoniau, Gine Brown, R John Nicholls, Paris Teix is


Original article

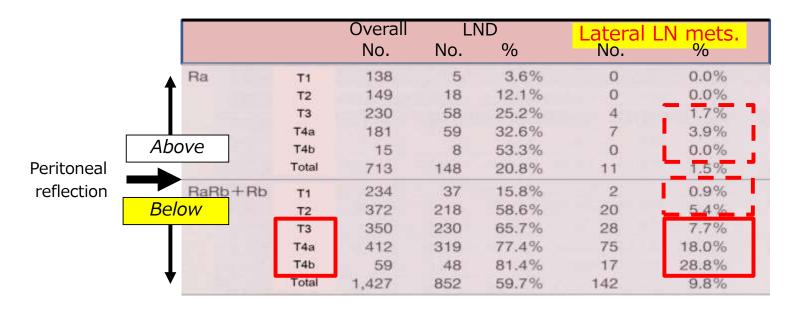
Relevance of magnetic resonance imaging-detected pelvic sidewall lymph node involvement in rectal cancer


MERCURY Study Group*

Primary Tumor


Lymphatic Drainage of the Rectum

Lymphatic Drainage of the Rectum



TME only

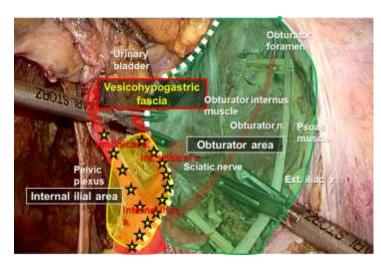
TME + LPLND

(JSCCR database 1991-8)

Lateral LN in T3-4 low rectal cancer below peritoneal reflection

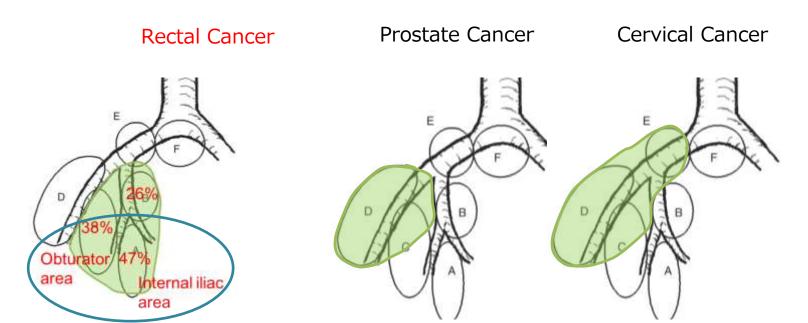
- 15-20% in T3-4 rectal cancer below PR

Ueno, Ann Surg 2007 Kobayashi, DCR 2009, Akiyoshi Ann Surg 2012

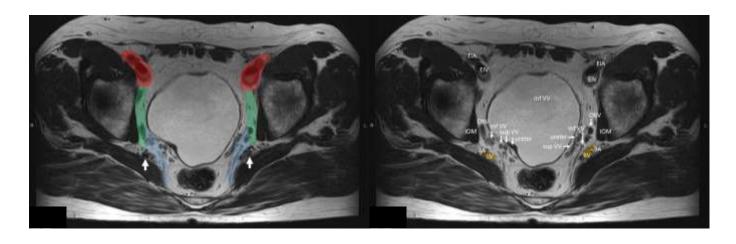

- Higher risk in lower tumors


Distance from AV (cm)	LPLN mets (%)	Odds Ratio	Р
6.1-8.0	11 %	Ref	
4.1-6.0	13 %	1.4	0.564
2.1-4.0	26 %	4.7	0.003
0-2.0	42 %	9.9	<.001

Ueno M, BJS 2005


Lateral Lymph Node

Anatomical Location



Different Distribution from GYN/URO

Kobayashi, DCR 2009 Karim, Urol Oncol 2013 Cibula, Ginecol Oncol 2010

MRI anatomy of lateral area

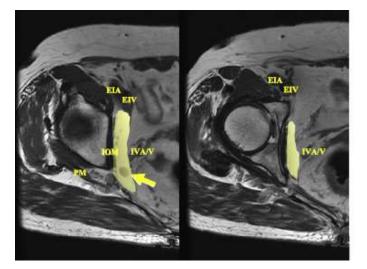


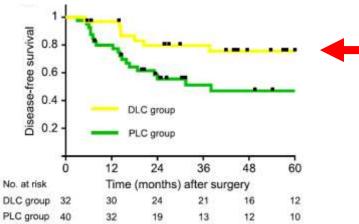
External iliac area

Obturator area

Internal iliac area

Ignore a Long-stretched Junctional LN at Ext. Iliac Vein

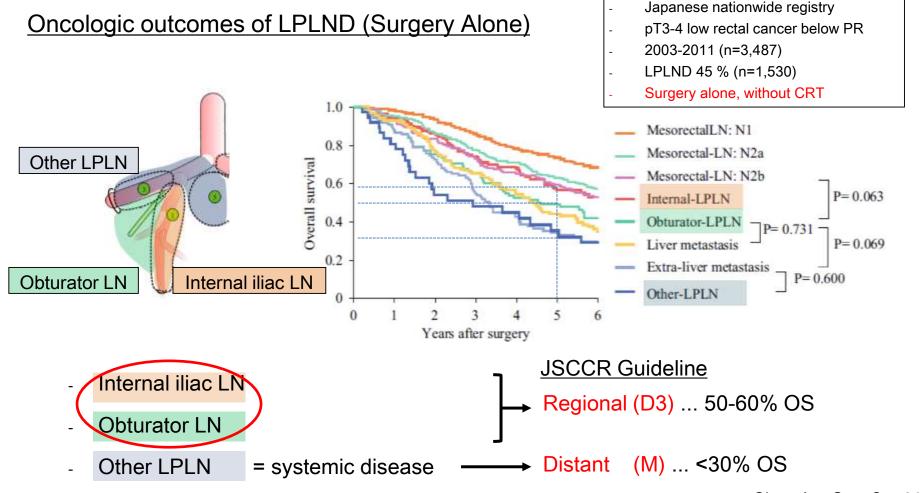



Importance of DISTAL Lateral Compartment

Oncologic impact of lateral lymph node metastasis at the distal lateral compartment in locally advanced low rectal cancer after neoadjuvant (chemo)radiotherapy

Takashi Akiyoshi ^{a, *}, Tomohiro Yamaguchi ^a, Makiko Hiratsuka ^b, Toshiki Mukai ^a, Yukiharu Hiyoshi ^a, Toshiya Nagasaki ^a, Masashi Ueno ^c, Yosuke Fukunaga ^a, Tsuyoshi Konishi ^d

- nCRT + TME + selective LPLND (n=718)
- 44 % of lateral LN metastasis occurred in distal compartment
- Better DFS after LPLND than proximal compartment

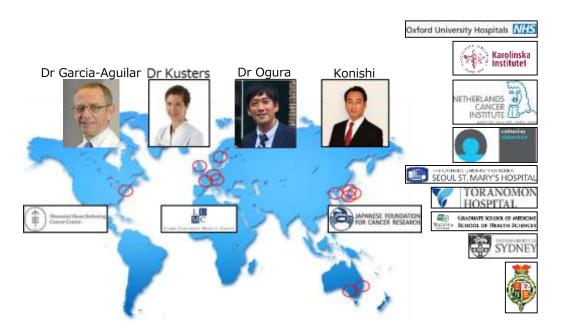

Akiyoshi, Konishi, EJSO 2021

Gastruenterological Centes, Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan

Department of Diagnostic Imaging, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan

Department of Gastroentenological Surgery, Torunamon Hospital, Tokyo, Japan

Department of Colon and Rectal Surgery, The University of Texas M.D. Anderson Canter, Floration, DX, 1564.

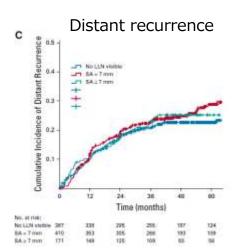

Lateral Lymph Node

Baseline Size

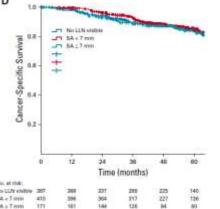
Multidisciplinary treatment and LPLND

Global evidences for "West + East"

- International multicenter study (12 centers, 7 countries)
- cT3-4 rectal cancer ≤8cm from anal verge, 2009-13 (n=1,216)

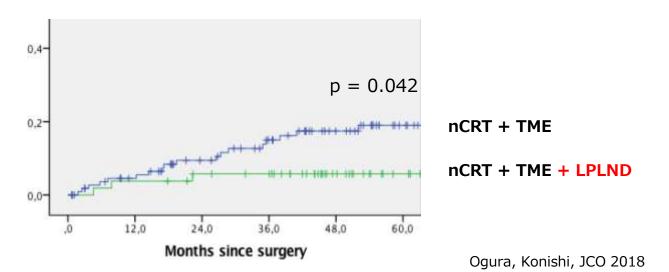

Ogura, Konishi, JCO 2018 Ogura, Konishi, JAMA Surg 2019 Schaap, Konishi, BJS 2021

Enlarged Lateral Nodes


- Increased LR with nCRT + TME
- No increase in distant mets

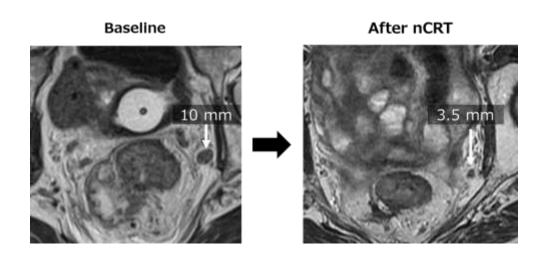
Lateral local recurrence after nCRT + TME

Baseline Lateral LN size	N (%)	5-yr lateral LR	p-value
Short axis			<0.0001
< 5 mm	316 (65)	4.6%	
≥ 6 mm	171 (35)	15.9%	
≥ 7 mm	118 (24)	19.5%	
≥ 8 mm	77 (16)	25.5%	
≥ 9 mm	62 (13)	30.3%	
≥10 mm	46 (9)	35.6%	

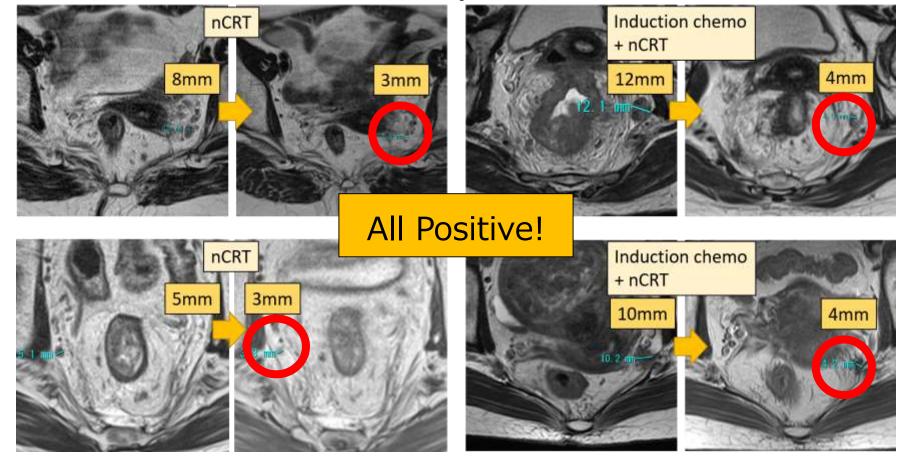


Ogura, Konishi, JCO 2019

Local recurrence with/out LPLND


(Baseline lateral nodes≥7mm)

	5-yr overall LR	Р	5-yr lateral LR	Р	
		.005		.042	
nCRT + TME	25.6 %		19.5 % ← ▶	1ajority o	of L
nCRT + TME + LPLND	5.7 %		5.7 %		



Lateral Lymph Node

Response to Neoadjuvant therapy

Residual Cancer in Responsive Lateral Nodes

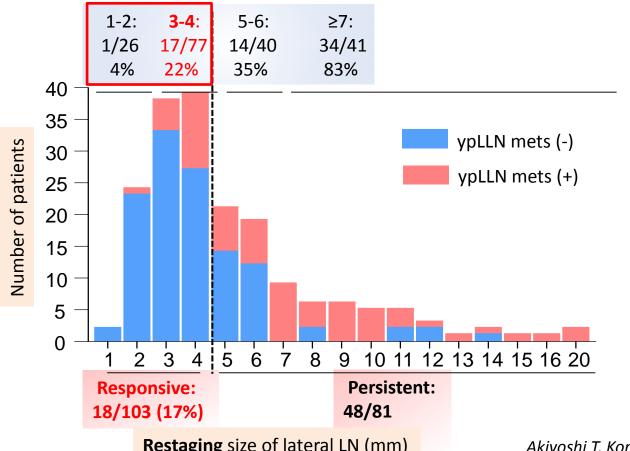
Systematic review of lateral node mets after nCRT

Significant rates of residual cancer in RESPONSIVE LN!

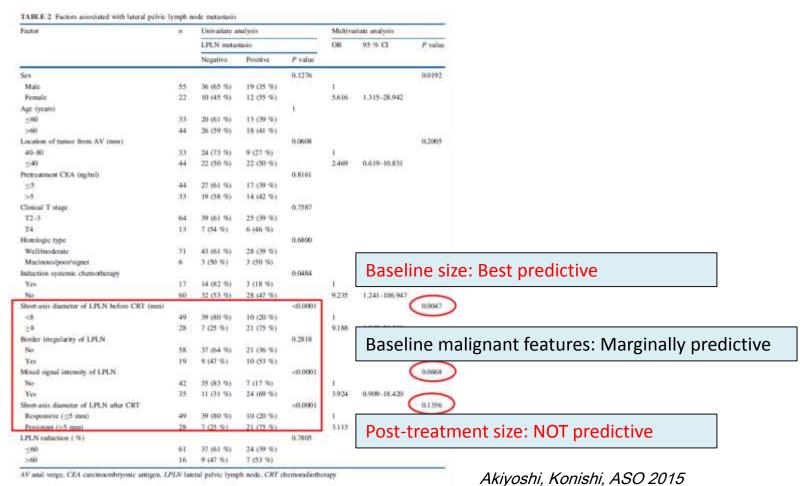
Systematic review of 11 studies, N=462

- Baseline suspicious lateral LNs

- yp-lateral N+: Responsive nodes: 0-20.4%


Persistent nodes: 25-83%

Author	Total N	Responsive N	%	yp-lateral N+	%
Oh	66	30	45.5	0	0
Akiyoshi	77	49	63.6	10	20.4
Ishihara	31	11	35.5	1	9.1
Kim	53	30	56.6	5	16.7
Kim	57	33	57.9	3	9.1
Total	284	153	35.5-63.6	16	10.5


Residual lateral LN mets by restaging size

(Baseline ≥5mm, n = 184)

Predictive Parameters for Residual Lateral LN

Consideration of Tumor Location for Cut-off Size

Baseline size

Sensitivity*	Specificity ^a	Positive predictive value	Negative predictive value
100% (36/36)	14.5% (10/69)	37.9% (36/95)	100% (10/10)
100% (36/36)	24.6% (17/69)	40.9% (36/88)	100% (17/17)
94.4% (34/36)	34.8% (24/69)	43.0% (34/79)	92.3% (24/26)
94.4% (34/36)	47.8% (33/69)	48.6% (34/70)	94.3% (33/35)
88.9% (32/36)	50.7% (35/69)	48.5% (32/66)	89.7% (35/39)
83.3% (30/36)	66.7% (46/69)	56.6% (30/53)	88.5% (46/52)
	100% (36/36) 100% (36/36) 94.4% (34/36) 94.4% (34/36) 88.9% (32/36)	100% (36/36) 14.5% (10/69) 100% (36/36) 24.6% (17/69) 94.4% (34/36) 34.8% (24/69) 94.4% (34/36) 47.8% (33/69) 88.9% (32/36) 50.7% (35/69)	100% (36/36) 14.5% (10/69) 37.9% (36/95) 100% (36/36) 24.6% (17/69) 40.9% (36/88) 94.4% (34/36) 34.8% (24/69) 43.0% (34/79) 94.4% (34/36) 47.8% (33/69) 48.6% (34/70) 88.9% (32/36) 50.7% (35/69) 48.5% (32/66)

- Multicenter retrospective study in Korea

- TME + LPLND (n=105, 2015-20)

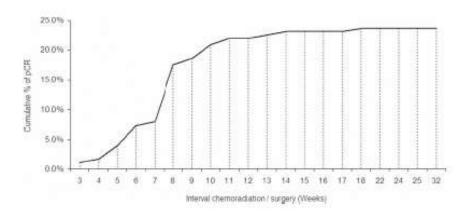
Post-treatment restaging size

Positive predictive value Negative predictive value
30.3% (20/66) 90.9% (10/11)
32.2% (19/59) 88.9% (16/18)
35.4% (17/48) 86.2% (25/29)
47.2% (17/36) 90.2% (37/41)
60.0% (15/25) 88.5% (46/52)
70.0% (7/10) 79.1% (53/67)
47.2% (17/36) 60.0% (15/25)

- Baseline size had better sensitivity, specificity, PPV, NPV
- Best cut-off size was different between mid vs low rectal cancer
- Smaller cut-off size for low tumors

Baseline, ≥8mm for AV >5 cm, ≥6mm for AV ≤5 cm

Criteria	eria Total (N=105) LPLN+ (N=36)		LPLN- (N=69)
+	77 (73%)	36 (34%)	41 (39%)
-	28 (27%)	0	28 (27%)


Longer waiting eliminates residual disease?

ORIGINAL ARTICLES

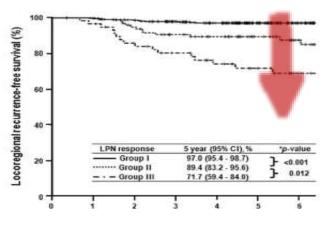
Predictive Factors of Pathologic Complete Response After Neoadjuvant Chemoradiation for Rectal Cancer

Matthew F. Kalady, MD,*† Luiz Felipe de Campos-Lobato, MD,* Luca Stocchi, MD,* Daniel P. Geisler, MD,*

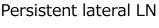
David Dietz, MD,* Ian C. Lavery, MD,* and Victor W. Fazio, MD*

Is lateral pelvic node dissection necessary after preoperative chemoradiotherapy for rectal cancer patients with initially suspected lateral pelvic node?

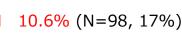
Korea, 2001-09

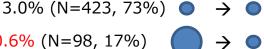

cT3-4 M0 mid/low rectal cancer nCRT + TME without LPLND

N = 580


Min Ju Kim, MD, Sung Chan Park, MD, Tae Hyun Kim, MD, Dae Yong Kim, MD, Sun Young Kim, MD, Ji Yeon Back, MD, Hee Jin Chang, MD, Ji Won Park, MD, and Jac Hwan Oh, MD, Goyang, Republic of

- Lateral nodal recurrence was a major cause of LR (71%, 29/41)
- 45% of lateral recurrence had no distant mets (= regional!)
- "Responsive" nodes had higher local recurrence than "Normal" nodes (HR 3.6)


Local recurrence free survival



Responsive lateral L	N	

Normal lateral LN

Kim MJ, Oh JH. Surgery 2016

Ann Surg Oncol (2020) 27:3525-3533 https://doi.org/10.1245/c10434-020-08481-y

ORIGINAL ARTICLE - COLORECTAL CANCER

Korea, National Cancer Center, 2001-16 cT3-4 M0 mid/low rectal cancer

Oncological Impact of Lateral Lymph Node Dissection After Preoperative Chemoradiotherapy in Patients with Rectal Cancer

Min Jung Kim, M.D.^{1,2}, George J. Chang, M.D., M.S.², Han-Ki Lim, M.D.⁴, Mi Kyung Song, Ph.D.⁵, Sung Chan Park, M.D.⁴, Dae Kyung Sohn, M.D., Ph.D.⁴, Hee Jin Chang, M.D., Ph.D.⁴, Dae Yong Kim, M.D., Ph.D.⁴, Ji Won Park, M.D.^{1,2}, Seung-Yong Jeong, M.D., Ph.D.^{1,2}, and Jae Hwan Oh, M.D., Ph.D.⁴

Treatment change

2001-09

nCRT + TME without LLND

2010-

nCRT + TME + LLND (≥5mm BASELINE)

Responsive LLN

N = 97

	Local recurrence		
	HR (95%CI) P		
TME only	1		
LLND	0.10 (0.01-0.94)	0.04	

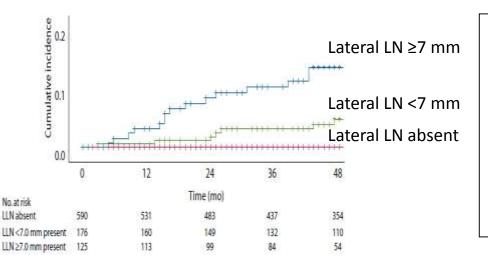
Post-treatment Size and Lateral Local Recurrence (International Lateral Node Study Consortium)

Baseline ≥7mm

Restaging Size	Obturator		Internal iliac	
Short axis	N (%)	5-yr lateral LR	N (%)	5-yr lateral LR
≤ 2 mm	7 (13)	0%	2 (6)	0%
≤ 3 mm	11 (20)	0%	6 (19)	0%
≤ 4 mm	20 (36)	0%	7 (22)	0%
≤ 5 mm	26 (46)	0%	9 (28)	12.5%
≤ 6 mm	35 (63)	0%	12 (38)	20.5%
≤ 7 mm	41 (73)	4.9%	18 (56)	21.2%

- ✓ Subpopulation analysis of only 61% of the initial cohort
- ✓ Shrinkage ≤4 mm occured only in 30% of the cases, 22% in internal iliac nodes

No at risk


National Data from the Netherland in a Trained Setting

Prognostic Implications of Lateral Lymph Nodes in Rectal Cancer: A Population-Based Cross-sectional Study With Standardized Radiological Evaluation After Dedicated Training

> Tania C. Sluckin, M.D.^{1,2,3} • Eline G.M. van Geffen, M.D.^{1,2,3} Sanne-Marije J.A. Hazen, M.D. 123 . Karin Horsthuis, M.D., Ph.D. 34 Regina G.H. Beets-Tan, M.D., Ph.D. SAZB • Corrie A.M. Marijnen, M.D., Ph.D. 9.10 Pieter I. Tanis, M.D., Ph.D. 23,11,12 • Miranda Kusters, M.D., Ph.D. 123 On behalf of the Dutch Snapshot Research Group

- cT3-4, ≤ 8 cm from ARJ, nCRT (n=894, 2016)
- 96 % had no additional surgery for lateral LN

- Enlarged ≥7 mm lateral LN (baseline)
 - independent predictor of LR
 - No impact on OS
- Downsizing had no impact on lateral LR
- Majority of baseline-enlarged lateral LN remained enlarged after nCRT (63% int. iliac, 42% obturator)

Current controversies in TNM for the radiological staging of rectal cancer and how to deal with them: results of a global online survey and multidisciplinary expert consensus

added benefit for lateral nodal staging [27]. Considering the current level of evidence, the panel agreed that for primary staging, the \geq 7-mm threshold may for now be adopted, although further validation is obviously needed. The panel did not support the proposed size thresholds after chemoradiotherapy as the evidence provided was considered too preliminary. Reasons for concern included under-investigation of confounding effects (e.g., varying intervals between neoadjuvant treatment and radiological re-assessment/surgery, varying radiation volumes/doses).

Dutch Prospective Study

- LANOREC Study
- National prospective registration study
- Predefined treatment protocol
- Startup cadaver workshops
- Monthly online technical feedback

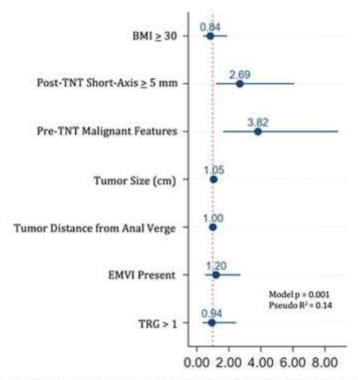
Decision of LPLND is complex

Magnetic Resonance Imaging Directed Surgical Decision Making for Lateral Pelvic Lymph Node Dissection in Rectal Cancer After Total Neoadjuvant Therapy (TNT)

Oliver Peacock, BMBS, PhD* Naveen Manisandaram, MD*

Sandra R. Dibrito, MD, PhD* Youngwan Kim, MD, PhD* Chung-Yuan Hu, MPH, PhD*

Brian K. Bednarski, MD* Tsuyoshi Konishi, MD, PhD* Nir Stanietzky, MD*

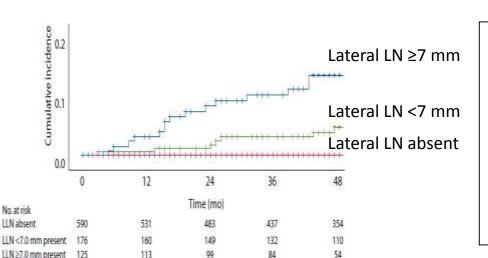

Raghumandan Vikram, MD† Harmeet Kaur, MD† Melissa W. Taggart, MD‡

Arvind Dasari, MD\$ Emina B. Holliday, MD|| Y Nancy You, MD, MHSc.*

and George J. Chang, MD, MS*==

Multiple MDT factors affect on indication for LPLND

- Lateral LN
 - Baseline size
 - Baseline malignant features
 - Response to TNT
- Primary tumor
 - Baseline size
 - Baseline malignant characteristics (T, N, EMVI, etc)
 - Response to TNT (cCR)
- Patient factors
 - Surgical risk


FIGURE 3. Multivariable analysis for factors affecting decision making for LPLND versus non-LPLND.

Prognostic Implications of Lateral Lymph Nodes in Rectal Cancer: A Population-Based Cross-sectional Study With Standardized Radiological Evaluation After Dedicated Training

Tania C. Słuckin, M.D.^{1,2,3} • Eline G.M. van Geffen, M.D.^{1,2,3}
Sanne-Marije J.A. Hazen, M.D.^{1,2,3} • Karin Horsthuis, M.D., Ph.D.^{3,6}
Regina G.H. Beets-Tan, M.D., Ph.D.^{3,0,2,3,4} • Corrie A.M. Marijnen, M.D., Ph.D.^{3,10}
Pieter J. Tanis, M.D., Ph.D.^{2,2,13,1,2}
On behalf of the Dutch Snapshot Research Group

- Dutch population-based cross-sectional study
- cT3-4, ≤8 cm from ARJ, nCRT (n=894, 2016)
- 96 % had no additional surgery for lateral LN

- Enlarged ≥7 mm lateral LN (baseline)
 - independent predictor of LR
 - No impact on OS
- Downsizing had no impact on lateral LR
- Majority of baseline-enlarged lateral LN remained enlarged after nCRT (63% int. iliac, 42% obturator)

- 3,057 rectal cancer in 2016
- 1,109 cT3-4, ≤8 cm
- 122 ≥7 mm lateral LN
- 23 lateral LR, of which 16 developed DM
- A very small group of patients...

- Dutch population-based cross-sectional study
- cT3-4, ≤8 cm from ARJ, nCRT (n=894, 2016)
- 96 % had no additional surgery for lateral LN

- Enlarged ≥7 mm lateral LN (baseline)
 - independent predictor of LR
 - No impact on OS
- Downsizing had no impact on lateral LR
- Majority of baseline-enlarged lateral LN remained enlarged after nCRT (63% int. iliac, 42% obturator)

LLN is a minor issue!

- OPRA cohort (N=324)
- 57 had visible LLN+, of which 3 had LLND
- 30 LLN disappeared after TNT
- Lateral LN recurrence was rare 3.5 % in LLN+
- Similar local rec or distant rec between
 - LLN+ vs. LLN-
 - > LLN ≥7 mm vs LLN <7 mm
- Lateral LN dissection likely benefits few pts

LLN is a minor issue!

Data reliability?

- OPRA cohort (N=324)
- 57 had visible LLN+, of which 3 had LLND
- 30 LLN disappeared after TNT
- Lateral LN recurrence was rare 3.5 % in LLN+
- Similar local rec or distant rec between
 - LLN+ vs. LLN-
 - ➤ LLN ≥7 mm vs LLN <7 mm
- Lateral LN dissection likely benefits few pts

- Special cohort with extremely high cCR >50 %
- ypN+ only 8.3 %
- MRI reviewed by untrained radiologists
- LLN+ is not clinically relevant

Take Home Notes: Indication for Lateral Node Dissection

- Primary tumor
 - > T3-4 mid-low rectal cancer below peritoneal reflection

Take Home Notes: Indication for Lateral Node Dissection

- Primary tumor
 - > T3-4 mid-low rectal cancer below peritoneal reflection
- Lateral LN
 - Location: internal iliac /obturator areas
 - Baseline 7mm (short axis) is a reasonable cut-off
 - Baseline vs restaging size... controversial
 - Low-located primary tumor may need a smaller cut-off
 - Malignant feature may support diagnosis

Take Home Notes: Indication for Lateral Node Dissection

- Primary tumor
 - > T3-4 mid-low rectal cancer below peritoneal reflection
- Lateral LN
 - Location: internal iliac /obturator areas
 - Baseline 7mm (short axis) is a reasonable cut-off
 - Baseline vs restaging size... controversial
 - Low-located primary tumor may need a smaller cut-off
 - Malignant feature may support diagnosis
- Comprehensive MDT decision
 - > Training across the depts (surgeons, radiologists, rad. Oncologist...)

Thank you

tkonishi@mdanderson.org